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Introduction 2

The Problem
Let

E :=
1

K
min
x∈X

x†Jx

with x ∈ C
K and J ∈ C

K×K.

Example 1 (sphere):

X = {x : x†x = K} =⇒ E = minλ(J )

Example 2 (cube):
X = {+1,−1}K =⇒ ???

Example 3 (vector precoding):

X = (4Z + 1)K =⇒ ???
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Application 3

The Gaussian Vector Channel

Let the received vector be given by

y = Ht + n

where

• t is the transmitted vector

• n is uncorrelated (white) Gaussian noise

• H is a coupling matrix accounting for crosstalk

In many applications, e.g. antenna arrays, code-division multiple-access, the coupling
matrix is modelled as a random matrix with independent identically distributed entries
(i.i.d. model).

Crosstalk can be processed either at receiver or transmitter
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Application 4
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Application 5

Processing at Transmitter

If the transmitter is a base-station and the receiver is a hand-held device one would
prefer to have the complexity at the transmitter.

E.g. let the transmitted vector be

t = H†(HH†)−1x

where x = s is the data to be sent.

Then,
y = s + n.

No crosstalk anymore due to channel inversion.
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Application 6

Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.

x† (HH†)−1
x > x†x.

In particular, let

• α = K
N ≤ 1;

• the entries of H are i.i.d. with variance 1/N .

Then, for fixed aspect ratio α

lim
K→∞

x† (HH†)−1
x

x†x
=

1

1− α

with probability 1.
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Vector Precoding 7

Lattice-Relaxation Precoding
Tomlinson ’71, Harashima & Miyakawa ’72

Choose that representation that gives the smallest transmit power.
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Vector Precoding 7

Lattice-Relaxation Precoding
Tomlinson ’71, Harashima & Miyakawa ’72

Instead of representing the logical ”0” by +1, we present it by any element of the set
{. . . ,−7,−3,+1,+5, . . . } = 4Z + 1. Correspondingly, the logical ”1” is represented
by any element of the set 4Z− 1.

Choose that representation that gives the smallest transmit power.
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Vector Precoding 8

General Relaxation Precoding

Let B0 and B1 denote the sets presenting 0 and 1, resp.

Let (s1, s2, s3, . . . , sK) ∈ {0, 1}K denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by

E = 1
K min

x∈X
x†Jx

with
X = Bs1 × Bs2 × · · · × BsK

and
J = (HH†)−1.

What is a smart choice for B0 and B1?
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Replica Method 9

Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit of a
quadratic energy potential.

The transmitted power is written as a zero temperature limit

E = − lim
β→∞

1

βK
log
∑

x∈X
e−β tr(x†Jx)

−→ − lim
β→∞

lim
K→∞

E
J

1

βK
log
∑

x∈X
e−β tr(Jxx†)

with 1
β
denoting temperature.
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Replica Method 10

The Harish-Chandra Integral
(also called the Itzykson-Zuber integral)

Let P be any positive semi-definite matrix of bounded rank n and let J be bi-unitarily
invariant. Then,

lim
K→∞

1

K
log E

J
e−K trJP = −

n∑

a=1

λa(P )∫

0

RJ(−w)dw

with λa denoting the positive eigenvalues of P and RJ(w) denoting the R-transform
of the spectral measure of J (Marinari et al. ’94; Guionnet & Mäıda ’05).
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Replica Method 11

The Replica Method
We want

lim
K→∞

1

K
E
J
log
∑

x∈X
e−β tr(Jxx†) = lim

K→∞
lim
n→0

1

nK
log E

J

(
∑

x∈X
e−β tr(Jxx†)

)n

= lim
K→∞

lim
n→0

1

nK
log E

J

n∏

a=1

∑

xa∈X
e
−β tr

(

Jxax
†
a

)

= lim
K→∞

lim
n→0

1

nK
log E

J

∑

x1∈X
· · ·
∑

xn∈X
e
− tr

(

Jβ
n∑

a=1
xax

†
a

)

= lim
K→∞

lim
n→0

1

nK
log E

Q
exp




−K

n∑

a=1

βλa(Q)∫

0

RJ(−w)dw






with

Qab :=
1

K
x†
axb.
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Replica Method 12

Laplace Integration
We find

lim
K→∞

1

K
E
J
log
∑

x∈X
e−β tr(Jxx†) = lim

K→∞
lim
n→0

1

nK
log E

Q
exp




−K

n∑

a=1

βλa(Q)∫

0

RJ(−w)dw






= min
Q:Pr(Q)>0

lim
n→0

1

n
log




−

n∑

a=1

βλa(Q)∫

0

RJ(−w)dw






; min
Q:Pr(Q)>0

lim
n→0

1

n
tr [QRJ(−βQ)] .

How to optimize over Q?
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Replica Symmetry 13

Replica Symmetric (RS) Ansatz

We assume a certain structure for a matrix Q. The easiest try is

Q :=











q + χ
β q · · · q q

q q + χ
β

. . . q q
... . . . . . . . . . ...

q q . . . q + χ
β q

q q · · · q q + χ
β











with some parameters q and χ.

This is a critical step. Sometimes, the structure of Q is more complicated.
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Replica Symmetry 14

RS Solution

Let P(s) denote the limit of the empirical distribution of the information symbols
s1, s2, . . . , sK as K → ∞. Let q and χ be the simultaneous solutions to

q =

∫∫

argmin
x∈Bs

2
∣
∣
∣z
√

2qR′(−χ)− 2xR(−χ)
∣
∣
∣Dz dP(s)

χ =
1

√

2qR′(−χ)

∫∫

argmin
x∈Bs

∣
∣
∣z
√

2qR′(−χ)− 2xR(−χ)
∣
∣
∣ z∗Dz dP(s)

where Dz = exp(−z2/2)dz/
√
2π, R(·) is the R-transform of the limiting eigenvalue

spectrum of J , and 0 < χ < ∞.

Then, replica symmetry (RS) implies

1

K
min
x∈X

x†Jx → q
∂

∂χ
χR(−χ)

as K → ∞.
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Replica Symmetry 15

Some R-Transforms

I : R(w) = 1

HH† : R(w) =
1

1− αw
Marchenko-Pastur (MP) law

(HH†)−1 : R(w) =
1− α−

√

(1− α)2 − 4αw

2αw
inv. MP
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Replica Symmetry 16

Odd Integer Quadrature Lattice
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Replica Symmetry 17

Complex Lattice Precoding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3

4

5

6

7

8

α

E
 [d

B
]

 

 

RS Solution
Lower Bound

16
π (1−α)

1
α−1
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Replica Symmetry 18
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Replica Symmetry Breaking 19

1-Step Replica Symmetry Breaking

Q :=

ai

µ
β columns

︷ ︸︸ ︷
aaaaaaaaaaaaaaaa














q + p + χ
β q + p q q · · · q q

q + p q + p + χ
β q q · · · q q

q q q + p + χ
β q + p . . . q q

q q q + p q + p + χ
β

... ...
... ... . . . . . . q q

q q q · · · q q + p + χ
β q + p

q q q · · · q q + p q + p + χ
β
















with the macroscopic parameters q, p and χ and the blocksize µ
β
.
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Replica Symmetry Breaking 20

1-Step Replica Symmetry Breaking

E =

(

q + p +
χ

µ

)

R(−χ− µp)− χ

µ
R(−χ)− q(µp + χ)R′(−χ− µp)

The macroscopic parameters q, p, χ and µ are given by 4 coupled non-linear equations.

Solving those equations numerically is a tedious and tricky task.
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Replica Symmetry Breaking 21
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Convex Precoding 22

Complex Convex Relaxation

. . . allows for convex programming (and is replica symmetric).
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Convex Precoding 23
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Inverting Singular Channels 24

Inverting Singular Channels

What happens if the MP-law has a mass point at zero (K > N)?

Can we precode without interference?

The precoder produces

lim
ǫ→0

argmin
x∈X

x†(HH† + ǫI)−1x

K

The received signal becomes

y = lim
ǫ→0

HH†(HH† + ǫI)−1x + n.

If the energy is finite, there is no interference.
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Inverting Singular Channels 25

Overloaded Convex Precoding
su

bs
pa

ce

1. quadrant

The probability that a random N dimensional
subspace in K real dimensions intersects
the 1. K-tant is

P (K,N) = 21−K
N−1∑

ℓ=0

(

K − 1

ℓ

)

As K,N to infinity, we get

P (K,N) =







1 K < 2N

1/2 K = 2N

0 K > 2N
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Inverting Singular Channels 25

Overloaded Convex Precoding
su

bs
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ce
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The probability that a random N dimensional
subspace in K complex dimensions intersects
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ℓ
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Inverting Singular Channels 26

Overloaded Convex Precoding

1 1.2 1.4 1.6 1.8 2 2.2
10

−8

10
−7

10
−6
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10
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α

1−
P

(K
,N

)
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N=16

N=32

N=64
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Open Problems 27

Wanted

lim
K→∞

1

K
log E

A,B
e−K trAPBP = f {RA(·), RB(·), . . . }

. . . or other more complicated exponents.
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Appendix 28

Negative Entropy

S = χR(−χ)−
χ∫

0

R(−w)dw

0 0.2 0.4 0.6 0.8 1
−10

0

−10
−1

−10
−2

−10
−3

−10
−4

entropy

α

S

RS

1RSB

The closer the entropy is to zero, the better the RSB approximation.
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