A Combinatorial Optimization Problem

in Wireless Communications
and Its Analysis

Ralf R. Miiller
EE Dept, NTNU

Benjamin Zaidel Dongning Guo
Tel Aviv EECS Dept, Northwestern
Rodrigo de Miguel Aris Moustakas
SINTEF, Trondheim Physics Dept, NCUA
Vesna Gardasevié Finn Knudsen

EE Dept, NTNU Math Dept, NTNU



Introduction 2

The Problem

1
_ T
E - —gélg(lw Jx

Let

with £ € C! and J € CE*x&,

A combinatorial optimization problem in wireless communications ... © Ralf R. Miiller 2011



Introduction 2

The Problem

1
_ T
E - —gélg(lw Jx

Let

with £ € C! and J € CE*x&,

Example 1 (sphere):
X={zx zlx=K} — FE=min\J)

A combinatorial optimization problem in wireless communications ... © Ralf R. Miiller 2011



Introduction 2

The Problem

1
E = _—minz'Jx

Ka:EX
with £ € C! and J € CE*x&,

Let

Example 1 (sphere):
X={zx zlx=K} — FE=min\J)

Example 2 (cube):
X ={+1, -1} =

A combinatorial optimization problem in wireless communications ... © Ralf R. Miiller 2011



Introduction 2

The Problem

1
E = _—minz'Jx

Ka:EX
with £ € C! and J € CE*x&,

Let

Example 1 (sphere):
X={zx zlx=K} — FE=min\J)

Example 2 (cube):
X ={+1, -1} =

Example 3 (vector precoding):

X=H4Z+1)" = 777
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Application 3

The Gaussian Vector Channel

Let the received vector be given by
y=Ht+n

where

e t is the transmitted vector

B <

e 1 is uncorrelated (white) Gaussian noise

e H is a coupling matrix accounting for crosstalk

In many applications, e.g. antenna arrays, code-division multiple-access, the coupling
matrix is modelled as a random matrix with independent identically distributed entries

(i.i.d. model).

Crosstalk can be processed either at receiver or transmitter
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Application 5

Processing at Transmitter

If the transmitter is a base-station and the receiver is a hand-held device one would
prefer to have the complexity at the transmitter.

E.g. let the transmitted vector be
t=H(HH" '«

where & = s is the data to be sent.

Then,
Yy=s+n.

No crosstalk anymore due to channel inversion.
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Application 6

Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.
—1
! (HHT) x> ax'c.
In particular, let

oa =1 <1,

e the entries of H are i.i.d. with variance 1/N.

Then, for fixed aspect ratio «

ol (HH]L)_1 T 1
lim =
K —00 xix 1 — «

with probability 1.
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Vector Precoding 7

Lattice-Relaxation Precoding
Tomlinson '71, Harashima & Miyakawa '72
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Vector Precoding 7

Lattice-Relaxation Precoding
Tomlinson '71, Harashima & Miyakawa '72
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Instead of representing the logical "0" by 41, we present it by any element of the set
{...,=7,=3,+1,+5,...} =4Z + 1. Correspondingly, the logical "1" is represented
by any element of the set 47 — 1.

Choose that representation that gives the smallest transmit power.

A combinatorial optimization problem in wireless communications ... © Ralf R. Miiller 2011



Vector Precoding 8

General Relaxation Precoding

Let By and 3, denote the sets presenting 0 and 1, resp.
Let (51,59, 83,...,5x) € {0,1}" denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by
b = % minz' Jx
reX

with
X =By X Bg, X -+ X By,

and
J=(HH""

What is a smart choice for By and 57
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Replica Method 9

Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit of a
quadratic energy potential.

The transmitted power is written as a zero temperature limit

1 i
E = —lim —lo o Atr(@!Jz)
500 BK g;

with % denoting temperature.
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Quadratic programming is the problem of finding the zero temperature limit of a
quadratic energy potential.

The transmitted power is written as a zero temperature limit

1 i
E = —lim —lo o Atr(@!Jz)
500 BK g;

1 t
: : —ptr(Jxax’)
— —ﬂhm lim JE,—log g ¢

with % denoting temperature.
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Replica Method 10

The Harish-Chandra Integral

(also called the Itzykson-Zuber integral)

Let P be any positive semi-definite matrix of bounded rank n and let J be bi-unitarily
invariant. Then,
(P
] —KtrJP
lim e 10g§)e = — Z / Rjy(—w)dw

K—oo

with A\, denoting the positive eigenvalues of P and Rj(w) denoting the R-transform
of the spectral measure of J (Marinari et al. '94; Guionnet & Maida '05).
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The Replica Method

We want
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The Replica Method

We want
1 J[ n
§ — 1] —Btr(Jzal) — [ lim —— —ptr(Jxax')
g Blos 3 e Al e | 20
xekX :I:GX
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Replica Method 11

The Replica Method

We want
- —Btr(Jza) _ L —Btr(Jzx)
g Blos 3 e i,y e o (Ze )
xckX xeX
= lim lim —logEH Z _Btr J%wa
K—ocon—0nkK
a=1 x,eX
—tr J@Z mam(Jg)
ity Lo S
:1:162( xrneX
| I (o) ]
— lim lim — | - -
Jim lim — ogg}exp KZ / Ry(—w)dw
with : ) _
Qab = ?wlwb
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Replica Method 12

Laplace Integration
We find

- Btera:T _ L _ _
Kh_r>noo Elog; [ggnooig%n[(loggexp KZ/ Ry(—w)dw
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Laplace Integration

We find

1 I L Bra(Q) ]

- — G tr( Jwa:T _ - _ _
Kh_r>nOO E log Z Kh_r>noo ilg%) T 1oggexp KZ / Ry(—w)dw

reX a=1 7
1 () ]
= min lim —log / Ry( dw
Q:Pr(Q)>0n—0Mn —
“=t 0
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Replica Method 12

Laplace Integration

We find

1 I L Bra(Q) ]

- — G tr( Jwa:T _ - _ _
Kh_r>nOO Elog Z %gﬂmiﬂnf( 1oggexp KZ / Ry(—w)dw

rckX =1 9
1 [ B(@
= min lim—log |— / Rjy(—w)dw
Q:Pr(Q)>0n—0Mn —
=0

~» min lim 1tr[QRJ( 5Q)| .

Q:Pr(Q)>0n—0n

How to optimize over Q7
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Replica Symmetry 13

Replica Symmetric (RS) Ansatz

We assume a certain structure for a matrix (). The easiest try is

gty ¢ g
¢ q+35 - 4 q
Q = : : : :
X
g q q+%5 q
| q ¢ q+3 |

with some parameters ¢ and Y.

This is a critical step. Sometimes, the structure of (Q is more complicated.
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Replica Symmetry 14

RS Solution

Let P(s) denote the limit of the empirical distribution of the information symbols

S1,89,...,Sk as K — o0. Let ¢ and x be the simultaneous solutions to
q = //argmin2 ‘z\/QqR’(— ) — 2z R(— ‘DzdP s)
xEBS
X = // argmin ‘z\/ZqR’(—X) — QxR(—X)‘ 2*DzdP(s)
\/QC]R/ rEBs

where Dz = exp(—z2/2)dz/\/ 27, R(-) is the R-transform of the limiting eigenvalue
spectrum of J, and 0 < y < .

Then, replica symmetry (RS) implies
1

0
— minz'Jz — q—

K zex 8)( XR(_X)

as K — oo.
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Replica Symmetry 15

Some R-Transforms

I: Rw)=1
1
HH': R(w)= Marchenko-Pastur (MP) law
l — oaw
l—a—/(1—a)Z_4
(HH')': R(w)=-—"2 VI —af—dow e
200w
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Replica Symmetry 16

Odd Integer Quadrature Lattice
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Replica Symmetry

17

Complex Lattice Precoding

8 | ——RS Solution
—— Lower Bound

7,
— 67
m
S,
L

5,

4/

3,

| | | | | | | | |
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a
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Replica Symmetry
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—— RS Solution
81 | ——Lower Bound

K=27

K=64
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Replica Symmetry Breaking 19

1-Step Replica Symmetry Breaking

5 collimns
qt+p+y q+p q ¢ g ¢ ]
¢+p q+tp+y g ¢ - q q
Q- q ¢ qtp+3 qtp - g q
q q ¢+p qt+p+3 ' '
. . . ; ’
q q g qFtpty gD
i q q o ¢ qtp qtptg

with the macroscopic parameters ¢, p and x and the blocksize %
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Replica Symmetry Breaking 20

1-Step Replica Symmetry Breaking
E = (q +p+ K) R(—x — pp) — 2R(=x) — q(up + X)R (=X — ip)
T T

The macroscopic parameters ¢, p, x and 1 are given by 4 coupled non-linear equations.

Solving those equations numerically is a tedious and tricky task.
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Replica Symmetry Breaking 21

— RS Solution
8| ——Lower Bound
—— 1RSB Solution
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Convex Precoding 22

Complex Convex Relaxation
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. allows for convex programming (and is replica symmetric).
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Convex Precoding 23

Energy Penalty Comparison (QPSK)

10 l I I I I ¢
—— RS Solution
—— Lower Bound
91| —— 1RSB Solution — L=2 ]

—— 1RSB Solution — L=3
® Discrete Lattice (L=2) — Simulation Results: K=27

8H Discrete Lattice (L=2) — Simulation Results: K=64

—— CR-QPSK - RS Solution

4 CR-QPSK - Simulation Results: K=64

E [dB]
<

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A combinatorial optimization problem in wireless communications ... © Ralf R. Miiller 2011



Inverting Singular Channels 24

Inverting Singular Channels
What happens if the MP-law has a mass point at zero (K > N)?

Can we precode without interference?
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, Cxf(HH + ) 'z
lim argmin
=0  Lex K

The received signal becomes
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Inverting Singular Channels
What happens if the MP-law has a mass point at zero (K > N)?
Can we precode without interference?

The precoder produces

, Cxf(HH + ) 'z
lim argmin
=0  Lex K

The received signal becomes

y=limHH (HH'+ I)"'z +n.

e—0

If the energy is finite, there is no interference.
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Inverting Singular Channels 25

Overloaded Convex Precoding

The probability that a random N dimensional

A . subspace in K real dimensions intersects
. the 1. K-tant is
N-1
J K -1
1-K } :
,f 1. quadrant P(K, N) =2 /
,” 620
y e
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Overloaded Convex Precoding

,f 1. quadrant

4
4

>

The probability that a random N dimensional

subspace in K real di
the 1. K-tant is

P(K,N)=2"

mensions intersects

()

As K, N to infinity, we get

P(K,N) =«

i

1 K < 2N
1/2 K =2N
0 K > 2N

\
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Overloaded Convex Precoding

,f 1. quadrant

4
4

>

The probability that a random N dimensional
subspace in ' complex dimensions intersects
the 1. K-tant is

2N—1
2K — 1
P(K.N) = 2172k
o) <23 ()

(=0

As K, N to infinity, we get

i

1 K < 2N
P(K,N) = |« 1/2 K =2N
\O K > 2N
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Inverting Singular Channels 26

Overloaded Convex Precoding
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Open Problems 27

Wanted

- 1 ~Ktr APBP __
Jm elog I e = f1Ral), Rp(),.. .}

. or other more complicated exponents.
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Appendix 28

Negative Entropy

10 entropy
_10_3k
X
S =xR(—x)— /R(—w)dw © 107}
0
-10't
-10°

The closer the entropy is to zero, the better the RSB approximation.
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